Create
Learn
Share

Rearranging Algebra Expressions

rename
Updated 2009-06-05 19:51

Rearranging Algebra Expressions

 

In each of the following, rearrange the equation listed on the left to isolate z.

 

Original EquationEquation for z
3 - 5 + 2 = 4 zz = 0
5 - 3 + 2 z = 4z = 1
7 z - 3 z + 4 = 0z = -1
8 z - 3 = 4 z + 3z = 3/2
z2 + 4 z + 4 = 0z = -2
z2 - 6 z+ 9 = 0z = 3
memorize

 

In each of the following, rearrange the equation listed on the left to isolate Z.

 

Original EquationEquation for Z
A - B = Y × ZZ = (A - B) / Y
A + B = Y + ZZ = A + B - Y
A + B + Y + Z = 0Z = -A - B - Y
(A × Z) + (B × Y) = 0Z = -B × Y / A
A = Z × Y / BZ = B × A / Y
A + (Z/Y) = BZ = (B - A) × Y
A + B = sin(Z/Y)Z = Y × sin-1(A + B)
Y = A × cos(Z + B)Z = -B + cos-1(Y/A)
A = B × ZYZ = (A/B)(1/Y)
A = B × exp(Z - Y)Z = Y + ln(A/B)
Y = A / (Z-B)2Z = B ± sqrt(A/Y)
(Y/A)2 + (Z/B)2 = 1Z = ±B × sqrt(1 - (Y/A)2)
memorize

 

Question Answer
A-B=Y×ZZ=(A-B)/Y
A+B=Y+ZZ=A+B-Y
A+B+Y+Z=0Z=-A-B-Y
(A×Z)+(B×Y)=0Z=-B×Y/A
A=Z×Y/BZ=B×A/Y
A+(Z/Y)=BZ=(B-A)×Y
A+B=sin(Z/Y)Z=Y×sin-1(A+B)
Y=A×cos(Z+B)Z=-B+cos-1(Y/A)
A=B×ZYZ=(A/B)(1/Y)
A=B×exp(Z-Y)Z=Y+ln(A/B)
Y=A/(Z-B)2Z=B±sqrt(A/Y)
(Y/A)2+(Z/B)2=1Z=±B×sqrt(1-(Y/A)2)
memorize