Create
Learn
Share

Gradients And Curls

rename
Updated 2009-05-09 23:33

Gradients and Curls

 

In the following, a and b are scalars, f, g, M, N are scalar functions of x, y, z,

G, F, F1, F2 are vector fields,
G = M x + N y, and

x, y, z are unit vectors along the cartesian coordinate x, y, z axes.

 

TermValue
(∂/∂x)x + (∂/∂y)y + (∂/∂z)z
∇fthe gradient of f
∇fgrad f
∇f(∂f/∂x)x + (∂f/∂y)y + (∂f/∂z)z
curl grad f∇ × ∇f
curl grad f0 for f(x,y,z) with continuous 2nd partial derivatives
div Fthe divergence of F
div F∇ • F
div G(∂M/∂x) + (∂N/∂y)
curl Fthe curl of F
curl F∇ × F
(curl G) • z(∂N/∂x) - (∂M/∂y)
∇ (f g)f ∇g + g ∇f
∇ • (g F)g ∇ • F + ∇ g • F
∇ × (g F)g ∇ × F + ∇ g × F
∇ • (a F1 + b F2)a ∇ • F1 + b ∇ • F2
∇ × (a F1 + b F2)a ∇ × F1 + b ∇ × F2
∇ (F1F2)  (F1 • ∇) F2    + (F2 • ∇) F1
+ F1 × (∇ × F2) + F2 × (∇ × F1)
∇ (F1 × F2)F2 • ∇ × F1 - F1 • ∇ × F2
∇ × (F1 × F2)  (F2 • ∇) F1 - (F1 • ∇) F2
+ (∇ • F2) F1 - (∇ • F1) F2
∇ × (∇ × F)∇ (∇ • F) - (∇ • ∇) F = ∇ (∇ • F) - ∇2 F
(∇ × F) × F(F • ∇) F - (1/2) ∇ (FF)
memorize

 

Reference: "University Calculus" by Hass, Weir, and Thomas, 2007 (ISBN=0-321-35014-6).

Recent badges